Unsupervised model selection for recognition of regional accented speech

نویسندگان

  • Maryam Najafian
  • Andrea DeMarco
  • Stephen J. Cox
  • Martin J. Russell
چکیده

This paper is concerned with automatic speech recognition (ASR) for accented speech. Given a small amount of speech from a new speaker, is it better to apply speaker adaptation to the baseline, or to use accent identification (AID) to identify the speaker’s accent and select an accent-dependent acoustic model? Three accent-based model selection methods are investigated: using the ‘true’ accent model, and unsupervised model selection using i-Vector and phonotactic-based AID. All three methods outperform the unadapted baseline. Most significantly, AID-based model selection using 43s of speech performs better than unsupervised speaker adaptation, even if the latter uses five times more adaptation data. Combining unsupervised AIDbased model selection and speaker adaptation gives an average relative reduction in ASR error rate of up to 47%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic model selection for recognition of regional accented speech

Accent is cited as an issue for speech recognition systems [1]. Research has shown that accent mismatch between the training and the test data will result in significant accuracy reduction in Automatic Speech Recognition (ASR) systems. Using HMM based ASR trained on a standard English accent, our study shows that the error rates can be up to seven times higher for accented speech, than for stan...

متن کامل

Accent detection and speech recognition for Shanghai-accented Mandarin

As speech recognition systems are used in ever more applications, it is crucial for the systems to be able to deal with accented speakers. Various techniques, such as acoustic model adaptation and pronunciation adaptation, have been reported to improve the recognition of non-native or accented speech. In this paper, we propose a new approach that combines accent detection, accent discriminative...

متن کامل

Partial Change Accent Models Speech Recog

Regional accents in Mandarin speech result mostly from partial phone changes due to the interlanguage system of non-native speakers. We propose partial change accent models based on accent-specific units with acoustic model reconstruction for accented Mandarin speech recognition. We use phonological rules of dialectical pronunciations together with likelihood ratio test to model actual accented...

متن کامل

Characterization of Speakers for Improved Automatic Speech Recognition

Automatic speech recognition technology is becoming increasingly widespread in many applications. For dictation tasks, where a single talker is to use the system for long periods of time, the high recognition accuracies obtained are in part due to the user performing a lengthy enrolment procedure to ‘tune’ the parameters of the recogniser to their particular voice characteristics and speaking s...

متن کامل

Prior knowledge guided maximum expected likelihood based model selection and adaptation for nonnative speech recognition

In this paper, an improved method of model complexity selection for nonnative speech recognition is proposed by using maximum a posteriori (MAP) estimation of bias distributions. An algorithm is described for estimating hyper-parameters of the priors of the bias distributions, and an automatic accent classification algorithm is also proposed for integration with dynamic model selection and adap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014